Processing math: 100%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
1.1k kez görüntülendi

f(x,y)=(x+y2)(x+y1)2+x kuralı ile verilen f:N×NN fonksiyonunun birebir ve örten olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 1.1k kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme

(x,y)(x,y)(x+yx+yx+y=x+y)


I. Durum: x+yx+y olsun. Bu durumda x+y<x+y olduğunu farz edebiliriz.

f(x,y)=(x+y2)(x+y1)2+x

(x+y2)(x+y1)2+x+y1

=(x+y)(x+y1)2

(x+y1)(x+y2)2

<(x+y1)(x+y2)2+x=f(x,y)f(x,y)<f(x,y)f(x,y)f(x,y).


II. Durum: x+y=x+y olsun.

(x,y)(x,y)x+y=x+y}xx. Bu durumda x<x farz edebiliriz.

x<xf(x,y)f(x,y)=(x+y2)(x+y1)2+x(x+y2)(x+y1)2x

f(x,y)f(x,y)(x+y=x+y)=(x+y2)(x+y1)2+x(x+y2)(x+y1)2x

f(x,y)f(x,y)=xx<0f(x,y)f(x,y).


O halde f fonksiyonu birebir bir fonksiyondur.

(11.5k puan) tarafından 

Örten olduğunu nasıl gösteririz?

20,329 soru
21,886 cevap
73,617 yorum
2,988,385 kullanıcı