Processing math: 10%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
902 kez görüntülendi
(X,d) metrik uzay ve (x_n), X’de dizi olmak üzere ``\lim_{n\to\infty}d(x_n,x_{n+1})=0\Rightarrow (x_n), \text{Cauchy dizisi}" önermesi her zaman doğru mudur? Yanıtınızı kanıtlayınız.
Lisans Matematik kategorisinde (11.5k puan) tarafından 
tarafından yeniden etikenlendirildi | 902 kez görüntülendi

İpucu: Harmonik seriyi düşününüz.

1 cevap

0 beğenilme 0 beğenilmeme

Genel terimi x_n=\ln n olan (x_n)_n gerçel sayı dizisi için \lim_{n\to\infty}d(x_{n+1},x_n)=\lim_{n\to\infty}|\ln(n+1)-\ln n|=\lim_{n\to\infty}\left|\ln\left(\frac{n+1}{n}\right)\right|=\lim_{n\to\infty}\left[\ln\left(\frac{n+1}{n}\right)\right]\overset{?}{=}\ln\left[\lim_{n\to\infty}\left(\frac{n+1}{n}\right)\right]=\ln 1=0 olmasına karşın (x_n)_n dizisi -sınırlı olmadığından- Cauchy dizisi değildir.

 

Not: "?" işaretinin olduğu geçişin gerekçesi de önemli.

(11.5k puan) tarafından 
tarafından düzenlendi
20,331 soru
21,886 cevap
73,623 yorum
3,019,231 kullanıcı