I. Durum: x≠x′∧y=y′ olsun.
x≠x′⇒2x−1≠2x′−1y=y′⇒2y−1=2y′−1}⇒2x−1(2y−1)≠2x′−1(2y′−1)⇒f(x,y)≠f(x′,y′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
II. Durum: x=x′∧y≠y′ olsun.
x=x′⇒2x−1=2x′−1y≠y′⇒2y−1≠2y′−1}⇒2x−1(2y−1)≠2x′−1(2y′−1)⇒f(x,y)≠f(x′,y′)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
III. Durum: x≠x′∧y≠y′ olsun.
x≠x′⇒2x−1≠2x′−1y≠y′⇒2y−1≠2y′−1}?⇒2x−1(2y−1)≠2x′−1(2y′−1)⇒f(x,y)≠f(x′,y′)