(a,b)⊆⋃n∈N[a+b−a4n,b−b−a4n]
ve
(a,b)⊇⋃n∈N[a+b−a4n,b−b−a4n] olduğunu göstermek yeterli ve gereklidir.
(a,b∈R)(a<b)
⇒
(∀n∈N)(a<a+b−a4n)(b−b−a4n<b)
⇒
(∀n∈N)([a+b−a4n,b−b−a4n]⊆(a,b))
⇒
⋃n∈N[a+b−a4n,b−b−a4n]⊆(a,b)…(1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x∈(a,b)⇒a<x<b⇒(0<x−a)(0<b−x)Arşimet Özelliği}⇒
⇒(∃n1∈N)(b−a≤4n1(x−a))(∃n2∈N)(b−a≤4n2(b−x))
⇒(∃n1∈N)(a+b−a4n1≤x)(∃n2∈N)(x≤b−b−a4n2)n0:=max{n1,n2}}⇒
⇒(n0∈N)(a+b−a4n0≤x)(x≤b−b−a4n0)
⇒(n0∈N)(a+b−a4n0≤x≤b−b−a4n0)
⇒x∈⋃n∈N[a+b−a4n,b−b−a4n].
O halde (a,b)⊆⋃n∈N[a+b−a4n,b−b−a4n]…(2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(1),(2)⇒(a,b)=⋃n∈N[a+b−a4n,b−b−a4n].