(a,b)\subseteq\bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]
ve
(a,b)\supseteq\bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right] olduğunu göstermek yeterli ve gereklidir.
(a,b\in\mathbb{R})(a<b)
\Rightarrow
(\forall n\in\mathbb{N})\left(a<a+\frac{b-a}{4n}\right)\left(b-\frac{b-a}{4n}<b\right)
\Rightarrow
(\forall n\in\mathbb{N})\left(\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]\subseteq (a,b)\right)
\Rightarrow
\bigcup_{n\in\mathbb{N}}\left [a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]\subseteq (a,b)\ldots (1)
-----------------------------------
\left.\begin{array}{rr} x\in (a,b)\Rightarrow a<x<b \Rightarrow (0<x-a)(0<b-x) \\ \\ \text{Arşimet Özelliği}\end{array}\right\}\Rightarrow
\Rightarrow (\exists n_1\in \mathbb{N})(b-a\leq 4n_1(x-a))(\exists n_2\in \mathbb{N})(b-a\leq 4n_2(b-x))
\left.\begin{array}{rr} \Rightarrow(\exists n_1\in \mathbb{N})\left(a+\frac{b-a}{4n_1}\leq x\right)(\exists n_2\in \mathbb{N})\left(x\leq b-\frac{b-a}{4n_2}\right)\\ \\ n_0:=\max\{n_1,n_2\}\end{array}\right\}\Rightarrow
\Rightarrow (n_0\in \mathbb{N})\left(a+\frac{b-a}{4n_0}\leq x\right)\left(x\leq b-\frac{b-a}{4n_0}\right)
\Rightarrow (n_0\in\mathbb{N})\left (a+\frac{b-a}{4n_0}\leq x \leq b-\frac{b-a}{4n_0}\right)
\Rightarrow x\in \bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right].
O halde (a,b)\subseteq\bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]\ldots (2)
-----------------------------------
(1),(2)\Rightarrow (a,b)=\bigcup_{n\in\mathbb{N}}\left [a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right].