Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
Posetlerde alt sınırları bulmak nasıl oluyor?
0
beğenilme
0
beğenilmeme
513
kez görüntülendi
(
2
R
,
⊆
)
posetinde
A
=
{
(
−
1
n
,
1
n
)
:
n
∈
N
}
olsun.
A
kümesinin alt sınırlarını bulunuz.
A
a
=
{
X
∈
2
R
:
∀
A
(
A
∈
A
⇒
X
⊆
A
)
}
=
{
X
∈
2
R
:
∀
A
(
A
∈
{
(
−
1
n
,
1
n
)
:
n
∈
N
}
⇒
X
⊆
A
)
⏟
(
∗
)
}
{
(
−
1
n
,
1
n
)
:
n
∈
N
}
=
{
(
−
1
,
1
)
,
(
−
1
2
,
1
2
)
,
(
−
1
3
,
1
3
)
,
.
.
.
}
soyut-matematik
poset
kısmi-sıralama-bağıntısı
17 Mart 2024
Lisans Matematik
kategorisinde
oznurakcicek
(
11
puan)
tarafından
soruldu
17 Mart 2024
murad.ozkoc
tarafından
düzenlendi
|
513
kez görüntülendi
cevap
yorum
@oznurakcicek,
(
−
1
n
,
1
n
)
sıralı ikili değil,
(açık) aralık, çünki
R
nin alt kümesi.
Sorunu bu seferlik ben düzenledim. Bir dahaki sefere daha dikkatli ol. Alt sınır tanımını yazmışsın. Şimdi de
(
∗
)
önermesinin doğru kılan
X
kümelerini bulmaya çalış.
teşekkür ederim hocam. dikkat etmemişim orsasına
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
X
herhangi bir küme ve
A
⊆
X
olmak üzere
(
(
X
,
⪯
)
poset
)
(
⪯
A
:=⪯
∩
A
2
)
⇒
(
A
,
⪯
A
)
poset
olduğunu gösteriniz.
Posetlere Dair (Sözlük Sıralama Bağıntısı)
İspatını nasıl yapabilirim?
(
R
,
≤
)
kümesi nasıl tam sıralı olabiliyor?
Tüm kategoriler
Akademik Matematik
735
Akademik Fizik
52
Teorik Bilgisayar Bilimi
32
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,333
soru
21,889
cevap
73,624
yorum
3,055,024
kullanıcı