$A:=\{x\in\mathbb{R}|0\leq x, \ x^2<2\}$ olsun.
$1\overset{\text{Neden?}}{=}1^2\overset{\text{Neden?}}{<}2\Rightarrow 1\in A\Rightarrow A\neq \emptyset\ldots (1)$
Şimdi de $$x\in A\Rightarrow x<2$$ olduğunu yani $A$ kümesinin her elemanının $2$'den küçük olduğunu görelim. $x\in A$ olsun. $x\not< 2$ yani $2\leq x$ olduğunu varsayarsak
$$\left.\begin{array}{rr} 2\leq x\Rightarrow 4\leq 2x\\ \\ 2\leq x\Rightarrow 2x\leq x^2\end{array} \right\}\Rightarrow \begin{array}{rr} \\ \\ \left. \begin{array}{cc} 4\leq 2x\leq x^2 \\ \\ x\in A\Rightarrow x^2<2\end{array} \right\} \Rightarrow 4\leq 2x\leq x^2 <2\end{array}$$ çelişkisini elde ederiz. O halde $$x\in A\Rightarrow x<2$$ yani $$2\in A^{\text{ü}}$$ yani $$A^{\text{ü}}\neq\emptyset$$ yani
$$A, \text{ kümesi üstten sınırlı}\ldots (2)$$ olur.
$\left.\begin{array}{rr} (1),(2)\overset{\text{SUP}}{\Rightarrow}(\exists a\in\mathbb{R})(a=\sup A) \\ \\ 1\in A\end{array}\right\}\Rightarrow 0<1\leq a\Rightarrow a\in \mathbb{R}^{> 0}$
Bir de $$a^2=2$$ olduğunu kanıtlarsak işimiz biter. Bunun için de $$\textbf{I. Durum}: a^2\leq 2$$ ve $$\textbf{II. Durum}:2\leq a^2$$ olduğunu göstermeliyiz. (Neden?).
$\textbf{I. Durum}:$ $a^2\leq 2$ olmasın yani $2<a^2$ olduğunu varsayalım.
$\left.\begin{array}{rr} 2<a^2\Rightarrow 0<a^2-2 \\ \\ a\in \mathbb{R}^{> 0} \end{array}\right\}\Rightarrow 0<\frac{a^2-2}{2a}\overset{\text{Arşimet Özelliği}}{\Rightarrow} (\exists m\in \mathbb{N})\left(\frac1m<\frac{a^2-2}{2a}\right) $
$\left.\begin{array}{rr}\Rightarrow\frac{2a}{m}<a^2-2 \Rightarrow 2 <a^2-\frac{2a}{m}<a^2-\frac{2a}{m}+\frac1{m^2}=\left(a-\frac1m\right)^2 \\ \\ b\in A\Rightarrow b^2<2\end{array}\right\}\Rightarrow$
$\Rightarrow b^2<2<\left(a-\frac1m\right)^2\overset{\text{Neden?}}{\Rightarrow} b<a-\frac1m$
yani $$b\in A\Rightarrow b<a-\frac1m$$ olur. Bu ise bize $a-\frac1m$ sayısının $A$ kümesinin bir üst sınırı olduğunu söyler ki bu da $$a=\sup A$$ olması ile çelişir. Demek ki $$a^2\leq 2\ldots (3)$$ olmalıdır.
$\textbf{II. Durum}:$ $2\leq a^2$ olmasın yani $a^2<2$ olduğunu varsayalım.
$\left.\begin{array}{rr} a^2<2\Rightarrow 0<2-a^2 \\ \\ a\in \mathbb{R}^{> 0} \end{array}\right\}\Rightarrow 0<\frac{2-a^2}{2a+1}\overset{\text{Arşimet Özelliği}}{\Rightarrow} (\exists n\in \mathbb{N})\left(\frac1n<\frac{2-a^2}{2a+1}\right) $
$\Rightarrow\frac{2a+1}{n}<2-a^2\Rightarrow \left(a+\frac{1}{n}\right)^2=a^2+\frac{2a}{n}+\frac{1}{n^2}\leq a^2+\frac{2a}{n}+\frac{1}{n}<2$
$\Rightarrow a+\frac{1}{n}\in A$
elde edilir ki bu da $a$'nın $A$ kümesinin en küçük üst sınırı olması ile çelişir. Demek ki $$2\leq a^2\ldots (4)$$ olmalıdır.
O halde
$$(3),(4)\overset{\text{Neden?}}{\Rightarrow} a^2=2$$ elde edilir.