T1) (∅⊆Y)(f−1[∅]=∅∈τ1)⇒∅∈τ2.
(Y⊆Y)(f−1[Y]=X∈τ1)⇒Y∈τ2.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T2) A,B∈τ2 olsun.
A∈τ2⇒(A⊆Y)(f−1[A]∈τ1)B∈τ2⇒(B⊆Y)(f−1[B]∈τ1)}⇒(A∩B⊆Y)(f−1[A∩B]=f−1[A]∩f−1[B]∈τ1)⇒A∩B∈τ2.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T3) A⊆τ2 olsun.
A⊆τ2⇒(∀A∈A)(A⊆Y)(f−1[A]∈τ1)⇒(∪A∈AA=∪A⊆Y)(f−1[∪A]=∪A∈Af−1[A]∈τ1)⇒∪A∈τ2.