Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi

$(X,\tau_1),(Y,\tau_2)$ topolojik uzaylar olmak üzere

$$(A\subseteq X)(B\subseteq Y)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.6k puan) tarafından  | 1k kez görüntülendi

Bu linkteki bilgiden faydalanabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme

$\left.\begin{array}{ccc} (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\subseteq A)(B^{\circ}\subseteq B)\Rightarrow A^{\circ}\times B^{\circ}\subseteq A\times B\Rightarrow (A^{\circ}\times B^{\circ})^{\circ}\subseteq (A\times B)^{\circ}\\ \\ (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\in\tau_1)(B^{\circ}\in\tau_2)\Rightarrow A^{\circ}\times B^{\circ}\in\tau_1\star\tau_2\Rightarrow (A^{\circ}\times B^{\circ})^{\circ} =A^{\circ}\times B^{\circ} \end{array}\right\}\Rightarrow A^{\circ}\times B^{\circ}\subseteq (A\times B)^{\circ}\ldots (1)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_1:X\times Y\to X, \pi_1(x,y)=x \,\ (\tau_1\star\tau_2\mbox{ - }\tau_1) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_1[(A\times B)^{\circ}]\in\tau_1\Rightarrow\left(\pi_1[(A\times B)^{\circ}]\right)^{\circ}=\pi_1[(A\times B)^{\circ}]\ldots (2)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq \pi_1[A\times B]=A\Rightarrow (\pi_1[(A\times B)^{\circ}])^{\circ}\subseteq A^{\circ}\ldots (3)$

$(2),(3)\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq  A^{\circ}\ldots (4)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_2:X\times Y\to Y, \pi_2(x,y)=y \,\ (\tau_1\star\tau_2\mbox{ - }\tau_2) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_2[(A\times B)^{\circ}]\in\tau_2\Rightarrow\left(\pi_2[(A\times B)^{\circ}]\right)^{\circ}=\pi_2[(A\times B)^{\circ}]\ldots (5)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq \pi_2[A\times B]=B\Rightarrow (\pi_2[(A\times B)^{\circ}])^{\circ}\subseteq B^{\circ}\ldots (6)$

$(5),(6)\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq  B^{\circ}\ldots (7)$

$(4),(7)\Rightarrow (A\times B)^{\circ}\overset{?}{\subseteq} \pi_1[(A\times B)^{\circ}]\times\pi_2[(A\times B)^{\circ}]\subseteq A^{\circ}\times B^{\circ}\ldots (8)$


$$(1),(8)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}.$$

Not : Son "?" işaretinin gerekçesi yorumdaki linkte mevcut. Diğer "?" işaretlerinin olduğu yerlerde de yine kafa yorulmasının faydalı olacağını düşünüyorum.

(11.6k puan) tarafından 
tarafından düzenlendi
20,349 soru
21,903 cevap
73,641 yorum
3,571,146 kullanıcı