Processing math: 63%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu

Answers posted by lokman gökçe

217
answers
74
best answers
0 votes
cevaplandı 2 Ağustos 2020
a1=ak3k ifadesinden k'yı yalnız bırakmaya çalışıyorsunuz diye anlıyorum. a1=k(a3) olup
1 vote
cevaplandı 22 Temmuz 2020
Bunun cevabı, +3 ü karşıya attığınızda neden işaret değiştirerek 3 yazdığınızda gizlidir. Doğru
0 votes
cevaplandı 4 Temmuz 2020
Mustang'in çözümüne paralel olarak beş kırmızıyı KKKKK biçiminde dizelim. olan yerlere e
0 votes
cevaplandı 3 Temmuz 2020
Özdeş 4 mavi arasından mümkün seçimler 0,1,2,3,4 tane olup 5 yolla yapılır. Sadece seçtiğimiz
1 vote
cevaplandı 3 Temmuz 2020
Soru 1[Orijinal Problem]: 7 özdeş çorap ve 7 özdeş ayakkabıya sahip 7 kollu bir ahtapot, her a
0 votes
cevaplandı 2 Temmuz 2020
Yanıt: D   Daha önce şurada daire diliminin boyanması problemini çözerek
1 vote
cevaplandı 30 Haziran 2020
Her bir rakamdan üçer tane alalım. Geriye 129=3 rakam daha belirleyeceğiz. Bunu da x+y+z=3 doğa
0 votes
cevaplandı 30 Haziran 2020
ij durumunun çözümünü yapalım. Burada da i nin çift sayı veya tek sayı olması durumuna gör
0 votes
cevaplandı 29 Haziran 2020
m(^ADB)=α+θ olduğuna dikkat etmişsinizdir.   İç açıortay teoreminden $
0 votes
cevaplandı 26 Haziran 2020
n bir pozitif tam sayı ve 5 iken f(n)= 1 + 5^n + 5^{2n} + 5^{3n} + 5^{4n} ifadesinin $
0 votes
cevaplandı 25 Haziran 2020
Blanchet teoremi olarak bilinir. Ceva teoremi yardımıyla yapılan güzel bir ispatını BURADA
0 votes
cevaplandı 24 Haziran 2020
Problem, indirgemeli diziler için iyi bir uygulamadır.   n tane dilim k tane renk ile ist
0 votes
cevaplandı 24 Haziran 2020
Problemdeki etiketlere bakarak, soyut cebir yöntemleriyle bir çözüm kurgulandığını düşündürüyor. Ben
1 vote
cevaplandı 17 Haziran 2020
Çözüm 2:   Her k, \ell pozitif tam sayısı için $36^k \equiv 6^k \equiv 6 \pmod{
0 votes
cevaplandı 16 Haziran 2020
Ek Soru: n tane tam sayı verilsin. Elemanlarının toplamı n ile tam bölünebilecek şekilde, b
0 votes
cevaplandı 11 Haziran 2020
Tavsiyem sınav odaklı olmayacaktır. "Şunu yaparsan bir haftada +3 net artar. Bu yayını çözersen
1 vote
cevaplandı 8 Haziran 2020
f(0)=1 olduğu problemde verilmiştir. s yay uzunluğu s(x_1)=\int_{0}^{x_1}\sqrt{1+f'(x)^2}dx
0 votes
cevaplandı 8 Haziran 2020
Şimdi daha fazla homoteti kullanılan bir ispat ekleyelim. Bu ispat, problemin dokusunu daha iyi
1 vote
cevaplandı 8 Haziran 2020
Çözüm:  Analitik düzlemde koordinat eksenlerini döndürerek x^2 - y^2 = k^2 denklemine sahip
0 votes
cevaplandı 8 Haziran 2020
Çözüm: Simetriden sadece \dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b} olduğunu göstermek yeter
20,333 soru
21,889 cevap
73,624 yorum
3,057,501 kullanıcı