$\dfrac 1 a , \dfrac1 b ,\dfrac 1 c $ sayıları için
$Harmonik ~~Ortalama \leq Aritmetik~~Ortalama $
$\dfrac{3}{a+b+c} \leq \dfrac{\dfrac1 a+\dfrac 1 b+\dfrac 1 c}{3}=\dfrac {\dfrac 1 7}{3}$
$\dfrac{3}{a+b+c} \leq \dfrac 1 {21} $
$63 \leq a+b+c$
$63-3a \leq b-a+c-a$
$0<63-3a<b-a+c-a$ $a<b<c$
$a<21$ $a-a<b-a<c-a$
$0<b-a<c-a$