$$\int _{0}^{\infty } \int _{1}^{a}e^{-xy}dydx = \int _{0}^{\infty }\dfrac {e^{-x}-e^{-xa}} {x}dx$$
turev alma sirasini degistirirsek, ki bu durumda kolay:
$$= \int _{1}^{a} \int _{0}^{\infty}e^{-xy}dydx $$
icerdeki integrali alirsak:
$$= \int _{1}^{a} \dfrac{1}{y}dy $$
$$=lna$$