Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
457 kez görüntülendi

000(xyz)1/7(yz)1/7z1/7(x+1)(y+1)(z+1)dxdydz

İntegralini çözün.

Lisans Matematik kategorisinde (1.1k puan) tarafından  | 457 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

İntegralimiz :

000(xyz)1/7(yz)1/7z1/7(x+1)(y+1)(z+1)dxdydz

İntegrali 3 parçaya ayıralım.

(0x1/7x+1dx)(0y2/7y+1dy)(0z3/7z+1dz)

Buradaki eşitliği kullanarak integralleri bulalım.

π3csc(6π7)csc(5π7)csc(4π7)

Gerekli sadeleştirmeleri yaparak cevaba ulaşabiliriz.

000(xyz)1/7(yz)1/7z1/7(x+1)(y+1)(z+1)dxdydz=877π393,75416820

(1.1k puan) tarafından 
20,328 soru
21,885 cevap
73,615 yorum
2,973,739 kullanıcı