Toplamdaki terim sayısı $(101-1)/2+1=51$ olup, tabanı $17$'nin tam katı olan $17^{2017},51^{2017},85^{2017}$ olan terimlerden kalan sıfır gelir. Geride kalan $48$ terimi $8$' lık $6$ kısım olarak düşünürsek;
$3(1^{2017}+2^{2017}+3^{2017}+4^{2017}+...+14^{2017}+15^{2017}+16^{2017})\equiv x(mod17)$ elde edilir. $3(1^{2017}+2^{2017}+3^{2017}+4^{2017}+...+8^{2017}+(-8)^{2017}+...+(-3)^{2017}+(-2)^{2017}+(-1)^{2017})\equiv x(mod17)$
$3.0\equiv x(mod 17)\Rightarrow x=0$ bulunur.