Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
751 kez görüntülendi

$\LARGE \displaystyle \sum^N_{n=0}\sum^n_{m=0}\sum^m_{l=0}\sum^l_{k=0}f(k)=\sum^N_{k=0} \dbinom{N-k+3}{3}f(k)$         

olduğunu kanıtlayalım.
Lisans Matematik kategorisinde (71 puan) tarafından  | 751 kez görüntülendi

$\displaystyle \sum^N_{a_n=0}\sum^{a_n}_{a_{n-1}=0}\cdots\sum^{a_2}_{a_1=0}\sum^{a_1}_{a_0=0}f(a_0)=\sum^N_{a_0=0} \left(\begin{matrix}N-a_0+n\\n \end{matrix}\right)f(a_0)$ şeklinde de genelleyebiliriz sanırım. Hatta muhtemelen öyle ama ispatta sorun yaşıyorum :(

Bu soruyu da genelleme için sordum, gerçi sanırım bunu ispatlayabilirsek diğerleri de onunla birlikte çok kolay olacak gibi...

Bu eşitlikler nereden geliyor, neye ulaşmaya çalışıyoruz? Takip ettiğiniz kaynak ne?

20,320 soru
21,881 cevap
73,600 yorum
2,932,636 kullanıcı