x2x3+x−2=x2(x−1)(x2+x+2)=Ax−1+Bx+Cx2+x+2
x2=A(x2+x+2)+(Bx+C)(x−1)
x=1→ A=1/4
x=0→ C=1/2
x=−1→ B=3/4
∫x2x3+x−2dx=14∫1x−1dx+34∫x+2x2+x+2dx
∫x+2x2+x+2dx=∫xx2+x+2+2x2+x+2dx
∫122xx2+x+2+2x2+x+2dx
∫122x+1−1x2+x+2+2x2+x+2dx
∫122x+1x2+x+2+12−1x2+x+2+2x2+x+2dx
12∫2x+1x2+x+2dx+32∫1x2+x+2dx
32∫1x2+x+2dx=32∫1x2+x+14−14+2dx=32∫1(x+12)2+74dx