(X,τ), kompakt uzay; (X,τ), Hausdorff; A∈C(X,τ); B∈C(X,τ), A∩B=∅, x∈A ve y∈B olsun.
(x∈A)(y∈B)A∩B=∅}⇒(x,y∈X)(x≠y)(X,τ), T2}⇒
⇒(∃Ux∈U(x))(∃Vy∈U(y))(Ux∩Vy=∅)A:={Ux|(x,y∈X)(x≠y)⇒(∃Ux∈U(x))(∃Vy∈U(y))(Ux∩Vy=∅)}B:={Vy|(x,y∈X)(x≠y)⇒(∃Ux∈U(x))(∃Vy∈U(y))(Ux∩Vy=∅)}}⇒
⇒(A⊆τ)(A⊆∪A)(B⊆τ)(B⊆∪B)((X,τ), kompakt uzay)(A,B∈C(X,τ))⇒(A, τ-kompakt)(B, τ-kompakt)}⇒
⇒(∃A∗⊆A)(|A∗|<ℵ0)(A⊆∪A∗)(∃B∗⊆B)(|B∗|<ℵ0)(B⊆∪B∗)(U:=∪A∗)(V:=∪B∗)}⇒
⇒(U∈U(A))(V∈U(B))(U∩V=∅).
NOT : U(A):={U|(U∈τ)(A⊆U)}