Diyelim ki $a$kutusunda 3 top, $b$kutusunda 2 top olsun. $a$kutusunda 2 mavi 1 beyaz, $b $kutusunda 1 mavi 1 beyaz olsun...
$a $kutusundan bir top çekelim, $b$kutusuna yerleştirelim, $b$kutusundan 1 top çekilirse mavi olma olasılığı nedir?
A,B,C $a$ kutusunda olsun ve A,B mavi olsun,C beyaz; $b$ kutusu, D,E, D mavi, E beyaz.
Tüm olasılıklar, $(A,D,E) gelebilir, ( B,D,E) ve son olarak (C,D,E) $bu da $5/9$ yapar.
Yukarıdaki yönteme (suitable'ın) göre ise,$a$ kutusundan alınan top beyaz ise, $1/3$ ve mavi ise, $2/3$ olasılıklarının toplamı ile 1 yapar.
Bir başka deyişle, $9/9$, toplam 9 durum var zaten, $a$ permutasyon ve $b$ permutasyon çarpımı.Yâni, sanki hepsi mavi de çekilen top mavi çıkacak kesinlikle...
Yukarıdaki yöntem ile bulunan sonuç mantıksız olduğuna göre, o yöntem yanlıştır.
Suitable'ın atladığı kısım şudur: $a$ kutusundan alınan topun olasılığına bakmamıştır, sadece topu almış, $b$ kutusuna koymuş, iyi de o topu hangi olasılıkla $b$ kutusuna koyuyorsunuz diye sorarlar? $a$ kutusundan mavi top ile beyaz topu çekme olasılığı aynı mı ki, onu alıp $b$ kutusuna yerleştiriyorsunuz?
BB, BM ve MM denmiş, benim küçük problemimde bu, B ve M oluyor. Her halde anlaşılmıştır.
Benim öğrencilere tavsiyem, bir problemi küçük probleme dönüştürüp yukarıda yaptığım gibi, yöntemi test etmektir. Mantık ile çelişmeyen bir sonuç olmalı, tüm toplar mavi olmadığına göre yöntemin geçersizliği gösterilmiştir.
Şimdi gelelim, sizin sorunuzun yanıtına, alttaki çözüm (cevap bölümüne girilen çözüm) yanlıştır.
Aslında, yukarıda benim uyguladığım yöntemi uygularsanız orijinal soru için, payda da 3780 sayısını payda ise, 240 yanıtını görürsünüz. Bu da şu şekilde bulunur.
BB= $4/7*3/6*2/10*1/9$
BM=$4/7*3/6*3/10*2/9$
MB=$3/7*4/6*3/10*2/9$
MM=$3/7*2/6*4/10*3/9$
Önce basitini düşünürsünüz, tüm uzaya bakarsınız, benim ilk örneğimde olduğu gibi... Bakınız, ilk örneğimde önce uzayı çıkarttım.
Şimdi, bu üstteki yönteme göre ise,
$2/3*2/3+1/3*1/3=5/9$ teyit edilir. B ve M olmasına göre...
Umarım anlaşılmıştır... Matematik Bölümü mezunu değilim, ama sanırım buradaki konunun uzmanları bu çözümü destekleyeceklerdir...
Bilgisayar Mühendisi olarak düşündüğümde ise, ağaç diyagramları ile çabucak çözüme ulaşırım, ancak burası için gereksizdir, tekniktir.