Sizler de bildiginiz güzel özdeşlikleri yazınız.
1."Logaritma"
log(1+2+3)=log1+log2+log3
√nlogn=nlog√n
−−−−−−−−−−−−−−−−−−−−−−−
2."Toplamlara dair"
(n∑k=1k)2=n∑k=1k3
−−−−−−−−−−−−−−−−−−−−−−−
3."Gamma fonksiyonundan bir çıkarım"
∞!=√2π
−−−−−−−−−−−−−−−−−−−−−−−
4."https://ocw.mit.edu/courses/mathematics/18-312-algebraic-combinatorics-spring-2009/readings-and-lecture-notes/MIT18_312S09_lec10_Patitio.pdf"
(1+x)(1+x2)(1+x3)⋯=1(1−x)(1−x3)(1−x5)⋯
−−−−−−−−−−−−−−−−−−−−−−−
5."Machin's Formulü:"
π4=4arctan15−arctan1239
"Trigonometri"
sec2(x)+csc2(x)=sec2(x)csc2(x)
1sin(2π/7)+1sin(3π/7)=1sin(π/7)
sin(x−y)sin(x+y)=(sinx−siny)(sinx+siny).
−−−−−−−−−−−−−−−−−−−−−−−
6."π"
π2=21⋅23⋅43⋅45⋅65⋅67⋅87⋅…
π4=1−13+15−17+19+…
π26=1+122+132+142+152+…
π332=1−133+153−173+193+…
π490=1+124+134+144+154+…
2π=√22⋅√2+√22⋅√2+√2+√22⋅…
π=41+123+225+327+429+…
−−−−−−−−−−−−−−−−−−−−−−−
7.
13+23+23+23+43+43+43+83=(1+2+2+2+4+4+4+8)2
1,741,725=17+77+47+17+77+27+57
111,111,111×111,111,111=12,345,678,987,654,321
1,741,725=17+77+47+17+77+27+57
102+112+122=132+142
−−−−−−−−−−−−−−−−−−−−−−−
8.
(a2+b2)⋅(c2+d2)=(ac∓bd)2+(ad±bc)2
9.
\begin{eqnarray}\sum_{i_1 = 0}^{n-k} \, \sum_{i_2 = 0}^{n-k-i_1} \cdots \sum_{i_k = 0}^{n-k-i_1 - \cdots - i_{k-1}} 1 = \binom{n}{k}\end{eqnarray}
10.
\frac{e}{2} = \left(\frac{2}{1}\right)^{1/2}\left(\frac{2\cdot 4}{3\cdot 3}\right)^{1/4}\left(\frac{4\cdot 6\cdot 6\cdot 8}{5\cdot 5\cdot 7\cdot 7}\right)^{1/8}\left(\frac{8\cdot 10\cdot 10\cdot 12\cdot 12\cdot 14\cdot 14\cdot 16}{9\cdot 9\cdot 11\cdot 11\cdot 13\cdot 13\cdot 15\cdot 15}\right)^{1/16}\cdots
11.
\int_0^\infty\sin\;x\quad\mathrm{d}x=1
\int_0^\infty\ln\;x\;\sin\;x\quad \mathrm{d}x=-\gamma
12."M.V Subbarao özdeşliği: n(\in\mathbb Z)>22 ve asal olsun"
n\sigma(n)\equiv 2 \pmod {\phi(n)}13.
i^i = \exp\left(-\frac{\pi}{2}\right)
\root i \of i = \exp\left(\frac{\pi}{2}\right)
\Rightarrow
\int_{0}^{\infty }\cos\left ( 2x \right )\prod_{n=0}^{\infty}\cos\left ( \frac{x}{n} \right )~\mathrm dx\approx \frac{\pi}{8}-7.41\times 10^{-43}
15.\int_0^\infty\frac1{1+x^2}\cdot\frac1{1+x^\pi}dx=\int_0^\infty\frac1{1+x^2}\cdot\frac1{1+x^e}dx
16.
\begin{eqnarray}\sum_{k = 0}^{\lfloor q - q/p) \rfloor} \left \lfloor \frac{p(q - k)}{q} \right \rfloor = \sum_{k = 1}^{q} \left \lfloor \frac{kp}{q} \right \rfloor\end{eqnarray}
17.
\sum_{n=1}^{+\infty}\frac{\mu(n)}{n}=1-\frac12-\frac13-\frac15+\frac16-\frac17+\frac1{10}-\frac1{11}-\frac1{13}+\frac1{14}+\frac1{15}-\cdots=0
18.
\frac{\pi}{4}=\sum_{n=1}^{\infty}\arctan\frac{1}{f_{2n+1}}
19.
\prod_{k=1}^{n-1}2\sin\frac{k \pi}{n} = n
20.
\frac{1 - \cos \alpha + \sin \alpha}{1 + \cos \alpha + \sin \alpha} = \sqrt{\frac{1-\cos \alpha}{1 + \cos \alpha}}
21.
\boxed{\boxed{\begin{align}E &=\sqrt{\left(pc\right)^{2} + \left(mc^{2}\right)^{2}}=mc^{2}+\left[\sqrt{\left(pc\right)^{2} \left(mc^{2}\right)^{2}} - mc^{2}\right]\\[3mm]&=mc^{2}+{\left(pc\right)^{2} \over \sqrt{\left(pc\right)^{2} \left(mc^{2}\right)^{2}} + mc^{2}}=mc^{2}+{p^{2}/2m \over 1 + {\sqrt{\left(pc\right)^{2} + \left(mc^{2}\right)^{2}} - mc^{2} \over 2mc^{2}}}\\[3mm]&=mc^{2}+{p^{2}/2m \over 1 + {p^{2}/2m \over \sqrt{\left(pc\right)^{2} + \left(mc^{2}\right)^{2}} + mc^{2}}}=mc^{2}+{p^{2}/2m \over 1 +{p^{2}/2m \over 1 + {p^{2}/2m \over \sqrt{\left(pc\right)^{2} + \left(mc^{2}\right)^{2}} - mc^{2}}}}\end{align}}}
22.
Euler sayısı e
Aurea Altın oran \phi
Euler-Mascheroni sabiti \gamma
ve \pi.
e\cdot\gamma\cdot\pi\cdot\phi \approx e + \gamma + \pi + \phi