Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.1k kez görüntülendi

iç çarpımdan bulamadım ?

Orta Öğretim Matematik kategorisinde (152 puan) tarafından 
tarafından düzenlendi | 1.1k kez görüntülendi

İç çarpımdan (skaler çarpım) faydalanın. Analitik düzleme çizerek de görmeniz mümkün.

analitikde bulabildim ancak iç çarpımda sonuca varamadım 

Bu iki vektörün iç çarpımını hesaplayın bakalım. Doğru yapıyor musunuz?

1 cevap

0 beğenilme 0 beğenilmeme

Eğer $\overrightarrow {A}=(x_1,y_1),\overrightarrow {B}=(x_2,y_2) $ vektörlerinin oluşturduğu pozitif yönlü açı ölçüsü $\alpha$  ise, bu iki vektörün iç çarpımı(nokta çarpımı);

$<\overrightarrow {A},\overrightarrow {B}>=|\overrightarrow {A}|.|\overrightarrow {B}|cos\alpha$ olarak tanımlanmaktadır. Ayrıca $<\overrightarrow {A},\overrightarrow {B}>=x_1.x_2+y_1.y_2$ dir. Dolayısıyla;

$$3.2+(-2).\sqrt3=\sqrt{3^2+\sqrt3^2}.\sqrt{2^2+(-2)^2}.cos\alpha$$

$$cos\alpha=\frac{6-2\sqrt3}{4\sqrt6}=\frac{3-\sqrt3}{2\sqrt6}=\frac{3\sqrt6-\sqrt{18}}{12}=\frac{\sqrt6-\sqrt2}{4}$$  demek ki $$ \alpha=75^0$$ dir.

(19.2k puan) tarafından 
20,345 soru
21,898 cevap
73,632 yorum
3,436,211 kullanıcı