$a$, $b$'nin en küçük ortak katı $m$ olsun. Bu durumda $a\mid m$($m=as$) ve $b\mid m$($m=bv$) olacak şekilde $s,v\in \Bbb{Z}$ vardır. Kabul edelim ki; $a$ ve $b$'nin bir başka ortak katı $n$ olsun. Buradan $a\mid n$ ($n=at$) ve $b\mid n$($n=bu$) olacak şekilde $t,u\in \Bbb{Z}$ vardır. İddia; $m\mid n$ midir? Bölüm algoritması gereğince $n=mq+r$ ve $0\leq r<m$ olacak şekilde tek türlü belirli $q,r\in \Bbb{Z}$ vardır. Buradan $r=n-mq=at-asq=a(t-sq)$ ve $r=n-mq=bu-bvq=b(u-vq)$ elde edilir. Bu ise $a\mid r$ ve $b\mid r$ olur ki; $m$'nin seçiminden $r=0$ yani; $n=mq$ ve $m\mid n$ elde edilir.