d[sin−1(1x2+y2)]+d[csc−1(x2+y2)]=d(π3)
(1x2+y2)′1√1−(x2+y2)2dx+(1x2+y2)′1√1−(x2+y2)2dy+(x2+y2)′(x2+y2)√(x2+y2)2−1dx+(x2+y2)′(x2+y2)√(x2+y2)2−1dy=0
(2x(x2+y2)2)1√1−(x2+y2)2dx+(2y(x2+y2)2)1√1−(x2+y2)2dy+2x(x2+y2)√(x2+y2)2−1dx+2y(x2+y2)√(x2+y2)2−1dy=0
ddx[sin−1(1x2+y2)+csc−1(x2+y2)]=
−(2x(x2+y2)2)1√1−(x2+y2)2−2x(x2+y2)√(x2+y2)2−1(2y(x2+y2)2)1√1−(x2+y2)2+2y(x2+y2)√(x2+y2)2−1=
−(xx2+y2)1√1−(x2+y2)2−x√(x2+y2)2−1(yx2+y2)1√1−(x2+y2)2+y√(x2+y2)2−1
(x2+y2)2<1 olmalıdır.