İspatında anlayamadığım iki yer var. Sorularımın olduğu yerleri italik ile vurgulayacağım.
Cebirin Temel Teoremi: Derecesi $1$'den büyük her polinomun en az bir kökü vardır.
Liouville Teoremi: Bir fonksiyon tam (entire) ve sınırlı ise sabittir.
İspat: Aksine ispat yapabilmek için şunu varsayalım, her $z\in \mathbb{C}$ için $p(z) \ne0$ polinomu olsun. Şimdi $f(z)=\dfrac{1}{p(z)}$ tanımlayalım. $f(z)$ tam (entire) ve sınırlıdır. Liouville teoreminden $f(z)$ sabit oldu. $f(z)=c \to p(z)=\dfrac{1}{c}$. Çelişki elde ettik. O halde en az bir tane $z_1 \in \mathbb{C}$ vardır, öyleki $p(z_1)=0$
Sorum: $f(z)$'nin tam ve sınırlı olduğunu nasıl söyleyebildik? Şunu söyleyebiliyorum varsayımdan $p(z) \ne0$, o halde $f(z)$ hiçbir zaman tanımsız olmaz. O zaman her yerde analitiktir, dahası tamdır. Sınırlı için ne demeliyiz?
2) $p(z)=\dfrac{1}{c}$ yazdıktan sonra nasıl hemen çelişki bulabildik? Neyi gözden kaçırıyorum?