
ClearAll["Global`*"]
Ε =
D[f[u, v], {u, 2}]^2 (1 + u^2) +
2 u v D[f[u, v], u, v] D[f[u, v], {u, 2}] +
D[f[u, v], u, v]^2 (1 + v^2);
G = D[f[u, v], {v, 2}]^2 (1 + v^2) +
2 u v D[f[u, v], u, v] D[f[u, v], {v, 2}] +
D[f[u, v], u, v]^2 (1 + u^2);
F = D[f[u, v], u,
v] (D[f[u, v], {u, 2}] (1 + u^2) + D[f[u, v], {v, 2}] (1 + v^2)) +
u v (D[f[u, v], {u, 2}] D[f[u, v], {v, 2}] + D[f[u, v], u, v]^2);
L = D[f[u, v], {u, 2}]/Sqrt[u^2 + v^2 + 1];
Ν = D[f[u, v], {v, 2}]/Sqrt[u^2 + v^2 + 1];
M = D[f[u, v], u, v]/Sqrt[u^2 + v^2 + 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //Simplify // FullSimplify
H = (Ε Ν - 2 F M + G L)/( 2 (Ε G - F^2)) // Simplify // FullSimplify
K=1(u2+v2+1)2(f(0,2)(u,v)f(2,0)(u,v)−f(1,1)(u,v)2)
H=−(u2+1)f(2,0)(u,v)−(v2+1)f(0,2)(u,v)−2uvf(1,1)(u,v)2(u2+v2+1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))
Veya daha anlasilir haliyle

ClearAll["Global`*"]
Ε = (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\))^2 (1 + u^2) +
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 + v^2);
G = (\!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\))^2 (1 + v^2) +
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 + u^2);
F = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) (1 + u^2) + \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) (1 + v^2)) +
u v (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2);
L = \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
Ν = \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
M = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //
Simplify // FullSimplify
H = (Ε Ν - 2 F M + G L)/(
2 (Ε G - F^2)) // Simplify // FullSimplify
___________________________________________________
Yeni katsilar icin K ve H:

K=1(u2+v2−1)2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))
H=−(u2−1)f(2,0)(u,v)−(v2−1)f(0,2)(u,v)−2uvf(1,1)(u,v)2(u2+v2−1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))
Veya sizin gosterimle soyle olur sanirsam.(Kontrol edilse iyi olur..)
K=−1(u2+v2−1)2(fuufvv−f2uv)
H=−(1−u2)fuu+(1−v2)fvv−2uvfuv2(u2+v2−1)3/2(fuufvv−f2uv)
ClearAll["Global`*"]
Ε = (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\))^2 (1 - u^2) -
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 - v^2);
G = (\!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\))^2 (1 - v^2) -
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 - u^2);
F = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) (1 - u^2) + \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) (1 - v^2)) -
u v (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2);
L = \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
Ν = \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
M = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //Simplify
H = (Ε Ν - 2 F M + G L)/(2 (Ε G - F^2)) // Simplify
________________________________________________________

S=(−(v2+1)f(0,2)(u,v)−uvf(1,1)(u,v)(u2+v2+1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))(u2+1)f(1,1)(u,v)+uvf(0,2)(u,v)(u2+v2+1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))(v2+1)f(1,1)(u,v)+uvf(2,0)(u,v)(u2+v2+1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v))−(u2+1)f(2,0)(u,v)−uvf(1,1)(u,v)(u2+v2+1)3/2(f(1,1)(u,v)2−f(0,2)(u,v)f(2,0)(u,v)))