Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.9k kez görüntülendi
$$\alpha \left( s\right) =\left( \dfrac{3}{5}\sin s,1+\cos s,\dfrac{4}{5}\sin s\right) $$ olduğuna göre $\alpha$ eğrisinin birim hızlı olduğunu gösteriniz. Frenet vektör alanları ile eğrilik ve burulma fonksiyonlarını bulunuz.
Lisans Matematik kategorisinde (467 puan) tarafından  | 1.9k kez görüntülendi

2 Cevaplar

0 beğenilme 0 beğenilmeme
$$\alpha '\left( s\right) =\left( \dfrac{3}{5}\cos s,-\sin s,\dfrac{4}{5}\cos s\right) $$ olduğundan $\left\| \alpha ^{'}\left( s\right) \right\| =\sqrt{\left( \dfrac{3}{5}\cos s\right) ^{2}+\left( -\sin s\right) ^{2}+\left( \dfrac{4}{5}\cos s\right) ^{2}}=\sqrt{\dfrac{9}{25}\cos ^{2}s+\sin ^{2}s+\dfrac{16}{25}\cos ^{2}s}=1$ dir.  $$\left\| \alpha '\left( s\right) \right\| =1$$ olduğundan $\alpha$ birim hızlı bir eğridir. $T$ vektör alanı, $T(s)=\alpha^{'}(s)$ eşitliği ile tanımlanmıştır. Buna göre $T\left( s\right) =\left( \dfrac{3}{5}\cos s,-\sin s,\dfrac{4}{5}\cos s\right) $ dir. Buradan $T^{'}\left( s\right) =\left( -\dfrac{3}{5}\sin s,-\cos s,-\dfrac{4}{5}\sin s\right) $ elde edilir. $$\kappa \left( s\right) =\left\| T^{'}\left( s\right) \right\| =\sqrt{\left( -\dfrac{3}{5}\sin s\right) ^{2}+\left( -\cos s\right) ^{2}+\left( -\dfrac{4}{5}\sin s\right) ^{2}}=1$$ bulunur.$N\left( s\right) =\dfrac{1}{\kappa\left( s\right) }T'\left( s\right) =\left( -\dfrac{3}{5}\sin s,-\cos s,-\dfrac{4}{5}\sin 5\right) $ olur.$$B\left( s\right) =T\left( s\right) \times N\left( s\right) =\begin{vmatrix}
i & j & \widehat{k} \\
\dfrac{3}{5}\cos s & -\sin s & \dfrac{4}{5}\cos s \\
-\dfrac{3}{5}\sin s & -\cos s & -\dfrac{4}{5}\sin s
\end{vmatrix}=\left( \dfrac{4}{5},0,-\dfrac{3}{5}\right)$$ dir.$B^{'}\left( s\right) =\left( 0,0,0\right)$ olduğundan $$\tau \left( s\right) =-\langle B'\left( s\right) ,N\left( s\right) \rangle =-\langle 0,N\left( s\right) \rangle =0$$ dir.
(467 puan) tarafından 
0 beğenilme 0 beğenilmeme
Şöyle de olur: $\alpha^{'''}=-\alpha^{'}$  olduğundan $det(\alpha^{'},\alpha^{''},\alpha^{'''})=0$  dır . Dolayısıyla $\tau=\dfrac{det(\alpha^{'},\alpha^{''},\alpha^{'''})}{||\alpha^{'}x\alpha^{''}||^{2}}=0$ bulunur. Demek ki verilen eğri bir düzlemde yatıyor.
(2.7k puan) tarafından 
20,200 soru
21,728 cevap
73,277 yorum
1,888,000 kullanıcı