Processing math: 16%
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
2.3k kez görüntülendi
α(s)=(35sins,1+coss,45sins) olduğuna göre α eğrisinin birim hızlı olduğunu gösteriniz. Frenet vektör alanları ile eğrilik ve burulma fonksiyonlarını bulunuz.
Lisans Matematik kategorisinde (467 puan) tarafından  | 2.3k kez görüntülendi

2 Cevaplar

0 beğenilme 0 beğenilmeme
α(s)=(35coss,sins,45coss) olduğundan dir.  \left\| \alpha '\left( s\right) \right\| =1 olduğundan \alpha birim hızlı bir eğridir. T vektör alanı, T(s)=\alpha^{'}(s) eşitliği ile tanımlanmıştır. Buna göre T\left( s\right) =\left( \dfrac{3}{5}\cos s,-\sin s,\dfrac{4}{5}\cos s\right) dir. Buradan T^{'}\left( s\right) =\left( -\dfrac{3}{5}\sin s,-\cos s,-\dfrac{4}{5}\sin s\right) elde edilir. \kappa \left( s\right) =\left\| T^{'}\left( s\right) \right\| =\sqrt{\left( -\dfrac{3}{5}\sin s\right) ^{2}+\left( -\cos s\right) ^{2}+\left( -\dfrac{4}{5}\sin s\right) ^{2}}=1 bulunur.N\left( s\right) =\dfrac{1}{\kappa\left( s\right) }T'\left( s\right) =\left( -\dfrac{3}{5}\sin s,-\cos s,-\dfrac{4}{5}\sin 5\right) olur.B\left( s\right) =T\left( s\right) \times N\left( s\right) =\begin{vmatrix} i & j & \widehat{k} \\ \dfrac{3}{5}\cos s & -\sin s & \dfrac{4}{5}\cos s \\ -\dfrac{3}{5}\sin s & -\cos s & -\dfrac{4}{5}\sin s \end{vmatrix}=\left( \dfrac{4}{5},0,-\dfrac{3}{5}\right) dir.B^{'}\left( s\right) =\left( 0,0,0\right) olduğundan \tau \left( s\right) =-\langle B'\left( s\right) ,N\left( s\right) \rangle =-\langle 0,N\left( s\right) \rangle =0 dir.
(467 puan) tarafından 
0 beğenilme 0 beğenilmeme
Şöyle de olur: \alpha^{'''}=-\alpha^{'}  olduğundan det(\alpha^{'},\alpha^{''},\alpha^{'''})=0  dır . Dolayısıyla \tau=\dfrac{det(\alpha^{'},\alpha^{''},\alpha^{'''})}{||\alpha^{'}x\alpha^{''}||^{2}}=0 bulunur. Demek ki verilen eğri bir düzlemde yatıyor.
(3.4k puan) tarafından 
20,333 soru
21,889 cevap
73,623 yorum
3,044,383 kullanıcı