(2k+1)! ile carpip bolelim.
=k∑i=01(2i+1)!(2k−2i)!=k∑i=0(2k+1)!(2k+1)!(2i+1)!(2k−2i)!
=1(2k+1)!k∑i=0(2k+1)!(2i+1)!(2k−2i)!=1(2k+1)!k∑i=0(2k+12i+1)
=1(2k+1)![k∑i=0(2k2i)+(2k2i+1)]=1(2k+1)!2k∑i=0(2ki)=22k(2k+1)!
Teşekkürler...Euler...
k∑i=0(2k+1)!(2i+1)!(2k−2i)!=k∑i=0(2k+12i+1)=(2k+11)+(2k+13)+....+=22k
Şöyle oldu...
=1(2k+1)!k∑i=0(2k+1)!(2i+1)!(2k−2i)!
=1(2k+1)!k∑i=0(2k+12i+1)
=1(2k+1)!((2k+11)+(2k+13)+⋯+(2k+12k+1))
=1(2k+1)!(22k+1−1)
=1(2k+1)!22k
O halde ifademiz
=2∞∑k=0(−1)kx2k+11(2k+1)!22k
=∞∑k=0(−1)k(2x)2k+1(2k+1)!
=sin2x olur
3. esitlikte toplam isareti olmamasi lazim..