Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1k kez görüntülendi
Feynman'ın en çok sevdigi numarayı kullanarak I(a)=0cos(ax)x2+b2dx integralini bulunuz.

a,bR+
Lisans Matematik kategorisinde (7.9k puan) tarafından  | 1k kez görüntülendi

Bu ve buna benzeyen diger sorunun cevaplari elinizde var mi? Paylasabilir misiniz?

Belki biri çözüp atar diye bekletiyorum, hatta biraz uğraşırsan sen de çözebilirsin. Zaten bunu çözmek için gereken trick bir altındaki soruda vermiştim.

Yarin cevaplamaya calisacagim.Yani bugun :-)

1 cevap

0 beğenilme 0 beğenilmeme
  • dda(I(a))=dda0cos(ax)x2+b2dx


  • dda(I(a))=0(a(cos(ax)x2+b2))dx

  • =0(xsin(ax)cos(ax)x2+b2)dx=0xsin(2ax)x2+b2dx


  • dda(I(a))=0sin(2ax)x2+b2/xdx=02acos(2ax)x2+b2/xdx=πe2ab2
(467 puan) tarafından 
tarafından düzenlendi

Aralara yaptiklarinin sebeplerini de ekleyebilir misin? Mesela turevi nasil iceri parca turev olarak attin vs...

Bir de turevinin ne oldugunu bulmusun sonunda...

Hocam üşendiğimden biraz eksiklikler olabilir ben burda yalnız feynman trick formülüne uydurdum sonuç larıda program aracılığıyla buldum

20,331 soru
21,886 cevap
73,623 yorum
3,020,546 kullanıcı