1. Aşama:
∞∑k=0(k+1)2k!=1+∞∑k=1k2+2k+1k!=1+∞∑k=1k(k−1)!+2∞∑k=11(k−1)!+∞∑k=11k!=∞∑k=1k+1−1(k−1)!+2∞∑k=01k!+∞∑k=11k!1+∞∑k=21(k−2)!+∞∑k=21(k−1)!+3∞∑k=01k!=∞∑k=0(k+1)2k!=5∞∑k=01k!
−−−−−−−−−−−−−−−−−−−−−−−
2. Aşama:
2,a:
2∞∑k=0kk!=2∞∑k=1kk!=2∞∑k=11(k−1)!=2∞∑k=01k!Yani2∞∑k=0kk!=2∞∑k=01k!
−−−−−−−−−−−−−−−−−−−−−−−
2,b:
∞∑k=0(k+1)2k!=∞∑k=0k2k!+∞∑k=02kk!+∞∑k=01k!⟹∞∑k=0(k+1)2k!=∞∑k=0k2k!+3∞∑k=01k!
−−−−−−−−−−−−−−−−−−−−−−−
2,c:
ex=∞∑k=0xkk!→e=∞∑k=01k!
−−−−−−−−−−−−−−−−−−−−−−−
Olduğundan;
∞∑k=0(k+1)2k!=5∞∑k=01k!=∞∑k=0k2k!+3∞∑k=01k!
→∞∑k=0k2k!=2∞∑k=01k!=2e