$$\boxed{\text{Kural:}\left|\dfrac{1}{a}\right|<1\quad\text{ise}\quad\quad1+\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{a}{a-1}}$$
$$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=\dfrac{1}{a}+\dfrac{2}{a^2}+\dfrac{3}{a^3}+.......+\dfrac{n}{a^n}+....$$
$$S=1+\dfrac{1}{a}+\dfrac{2}{a^2}+\dfrac{3}{a^3}+.......+\dfrac{n}{a^n}+....$$
$$\cdots$$
$$S_1=\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$
$$S_2=\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$
$$S_3=\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....$$
$$\text{bunları toplarsak istenen ifadeyi buluruz}\;\left(S_1+S_2+S_3+......=\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}\right)$$
$$---------------------------$$
$$S_1=\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)$$
$$S_2=\dfrac{1}{a^2}+\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a^2}.\left(\dfrac{a}{a-1}\right)$$
$$S_3=\dfrac{1}{a^3}+.......+\dfrac{1}{a^n}+....=\dfrac{1}{a^3}.\left(\dfrac{a}{a-1}\right)$$
$$\vdots$$
$$\text{bunları toplayıp , paranteze alalım}$$
$$\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=S_1+S_2+S_3+....=\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)+\dfrac{1}{a^2}.\left(\dfrac{a}{a-1}\right)+.....$$
$$=$$
$$\dfrac{1}{a}.\left(\dfrac{a}{a-1}\right)\underbrace{\left[1+\dfrac{1}{a}+\dfrac{1}{a^2}+\dfrac{1}{a^3}+......\right]}_{\left(\dfrac{a}{a-1}\right)}$$
$$\Longleftrightarrow$$
$$\boxed{\boxed{\boxed{\displaystyle\sum_{n=1}^\infty\dfrac{n}{a^n}(a\in\mathbb R^{>1})=\dfrac{1}{a}\left(\dfrac{a}{a-1}\right)^2}}}$$