$|AD|=y,|DE|=DC|=x,|BC|=a$ birim olsunlar. $AED\sim ABC$ olduğundan $\frac{x}{a}=\frac{y}{y+x}\Rightarrow ay=xy+x^2...........(1)$ olur. Öteyandan $ABC$ dik üçgeninde Öklidten $|BD|^2=x.y........(2)$ ve $BDC$ dik üçgeninde Pisagordan $ x.y+x^2=a^2.......(3)$ olur. $(1),(3)$ den $a=y$ çıkar. O halde $x^2+ax-a^2=0\Rightarrow x_{1,2}=\frac{-a\mp a\sqrt{5}}{2}$ dır. $AED$ dik üçgeninde $sina =\frac{x}{a}=\frac{-1+\sqrt5}{2}$ olur.
Diğer taraftan $cos2a=1-2sin^2a=1-2(\frac{-1+\sqrt5}{2})^2=\sqrt5-2$