Loading [MathJax]/jax/output/HTML-CSS/jax.js
Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
535 kez görüntülendi

(X,d1),(X,d2) metrik uzaylar olmak üzere

d1Dd2

(ϵ>0)(δ1,δ2>0)(xX)[Bd1(x,δ1)Bd2(x,ϵ)Bd2(x,δ2)Bd1(x,ϵ)]

olduğunu gösteriniz.

Tanım: (X,d1),(X,d2) metrik uzaylar olmak üzere

d1Dd2

:⇔

(ϵ>0)(δ1,δ2>0)(x,yX)[(d1(x,y)<δ1d2(x,y)<ϵ)(d2(x,y)<δ2d1(x,y)<ϵ)]

Lisans Matematik kategorisinde (11.6k puan) tarafından 
tarafından düzenlendi | 535 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

İspat:

d1Dd2

(ϵ>0)(δ1,δ2>0)(x,yX)[(d1(x,y)<δ1d2(x,y)<ϵ)(d2(x,y)<δ2d1(x,y)<ϵ)]

(ϵ>0)(δ1,δ2>0)(x,yX)[(yBd1(x,δ1)yBd2(x,ϵ))(yBd2(x,δ2)yBd1(x,ϵ))]

(ϵ>0)(δ1,δ2>0)(xX)[Bd1(x,δ1)Bd2(x,ϵ)Bd2(x,δ2)Bd1(x,ϵ)].

(11.6k puan) tarafından 
tarafından düzenlendi
20,336 soru
21,890 cevap
73,626 yorum
3,180,004 kullanıcı