Bir analtik-geometrik bölgede tanımlı bir nesne, diğer analtik-geometrik bölgelerde ne anlam ifade eder?İzdüşüm fonksiyonu nasıl tanımlanıyor?

2 beğenilme 0 beğenilmeme
93 kez görüntülendi

Böyle bir ileri teori mevcut mu?

Hipotezim:
$3$ boyutlu uzayda bir $A$ düzlemine çember çizin, öyle bir $B$ düzlem vardır ki, $A$'daki çemberin iz düşümü, $B$'de elips veya $B$'de çizilen elips, $A$'da çember izdüşümü oluşturur.

Bu hipotezi nasıl ispatlarım?


Sav:

$n$ boyutlu uzayda bir $A$ ekseninde tanımlı $\mathcal{G}_A$  cisminin, $B$ eksenine göre eşleşmesi(idüşümünün en genel halini izah etmeye çalıştım)  $\mathcal{I}_B$ oluyor ise;

$$\mathcal G_A\quad\Xi\to\Xi\quad \mathcal I_B$$

önermesi dogru olsun;

Aynı anda;

$$\mathcal G_B\quad\Xi\to\Xi\quad \mathcal I_A$$

Doğru olur.

Sav ile ilgili benzer ilgili ileri okumalar var mıdır? Savı hangi matematiksel yöntemlerle çürütür/ispatlarız.

7, Ocak, 7 Akademik Matematik kategorisinde Anıl (6,935 puan) tarafından  soruldu
7, Ocak, 7 Anıl tarafından düzenlendi

Soru ile ilgili eleştirmelerinizi ve ileri okumaları şiddetle istiyor ve bekliyorum.

dezarg veya papussel düzlemleri bir fikir oluşturabilir mi?( kendileri değil yani ) mesela oradaki doğruların durumu 2 boyutlu veya 3 boyutlu uzaydakinden nasıl farklı oluyor mantığı işe yarar.

Projektif geometri bakmanızı tavsiye ederim hocam.



...